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ABSTRACT Shannon’s entropy is a popular alpha diversity metric because it estimates
both richness and evenness in a single equation. However, since its value is dependent
on both those parameters, there is theoretically an infinite number of richness/even-
ness value combinations translating into the same index score. By decoupling both
components measured by Shannon’s entropy, two communities having identical indi-
ces can be differentiated by mapping richness and evenness coordinates on a scatter
plot. In such graphs, confidence ellipses would allow testing significant differences
between groups of samples. Multivariate statistical tests such as permutational multi-
variate analysis of variance (PERMANOVA) can be performed on distance matrices cal-
culated from richness and evenness coordinates and detect statistically significant dif-
ferences that would have remained unforeseen otherwise. Therefore, plotting richness
and evenness on two-dimensional (2D) graphs gives a more thorough understanding
of how alpha diversity differs between groups of samples.
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Quantifying species diversity is a fundamental theme of ecology. Although there
are several definitions of it (alpha, beta, and gamma diversity), it is most often

described in terms of alpha diversity, e.g., richness (the number of species) and even-
ness (a measure of how the species’ relative abundances tend to be uniformly distrib-
uted) within a community or habitat (1).

To summarize and compare the alpha diversities of two ecological communities,
researchers frequently use scalar diversity indices. As they reduce the dimensionality of
complex multivariate data into a scalar number, diversity indices can be compared
using null hypothesis tests or confidence intervals (2). However, there is a myriad of
those indices, each measuring different parameters, making the direct comparison of
values from different indices difficult or even impossible. Some strictly measure species
richness such as observed richness, Chao1, and ACE estimators (3) while others esti-
mate alpha diversity as a phylogenetic metric (e.g., Faith’s phylogenetic diversity [PD]
index). Other metrics, such as Shannon’s entropy (H9), englobe richness and evenness
into a single metric. This index is unarguably one of the most popular metrics in com-
munity ecology, alongside Simpson’s diversity index (l), even though there are yet no
clear guidelines on which diversity index should be used (4).

Shannon’s entropy (H9) is defined as follows:

H 9 ¼ 2

XS

i¼1

pilnpi (1)

where S is the total amount of species in a biome and pi is the relative abundance
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(proportion) of species i. However, since it measures both richness and evenness in a
single equation, there is theoretically an infinite number of richness/evenness value
combinations translating into the same index score. Furthermore, richness and even-
ness may covariate positively, but also negatively. For example, in a 2020 study on
microbiota dynamics in yellow perch (Perca flavescens) exposed to trace cadmium con-
tamination, “decreasing richness and increasing evenness were observed” (5). There is
no way of detecting whether evenness/richness covariance is either positive or nega-
tive by using only Shannon’s entropy, because it outputs the level of uncertainty in the
species profile of a community, not how many species there are or how even their dis-
tributions are (6). To do so, Shannon’s entropy is usually compared alongside one or
more indices that measure either richness or evenness (7, 8).

Here is a fictitious example with two simple mock communities to illustrate this issue
(Table 1). Both have near-identical Shannon indices despite a very different community
composition (1.609 and 1.608, respectively). This is because Shannon’s entropy binds
richness (RK

i¼1 i) and evenness (2pilnpi) together in a single equation. Decoupling its
components would yield a more detailed overview of alpha diversity than what
Shannon’s entropy would reveal alone. This can be achieved by visualizing richness and
evenness on two-dimensional (2D) graphs, where each parameter would be assigned to
an orthogonal axis. Such graphs would also eliminate the need for comparing richness
and evenness indices side by side, as the two concepts are visualized simultaneously
and derived from the formula for Shannon’s entropy.

METHODOLOGY
Deriving species richness. The simplest definition of species richness is the total

amount of species found in a community (the term S in equation 1). Although several
definitions of species richness have been formulated (e.g., Chao1, ACE, etc.), for the
sake of simplicity, we will illustrate species richness here by its simplest definition (i.e.,
the number of observed taxa without extrapolating rare taxa).

Deriving evenness. Deriving evenness from Shannon’s entropy is not as obvious as
deriving richness. The “evenness” component would be calculated using relative abun-
dances (pi). The ln-transformation of pi in Shannon’s entropy’s formula narrows the
range (and therefore the impact) of extreme values and still weighs high relative abun-
dances as “high” and low abundances as “low.”

A way to estimate evenness would be to calculate the median of summation operand
in Shannon’s entropy formula (2pilnpi). The median is an efficient trend indicator that is
not affected by outlier values as the arithmetic average is (9). Furthermore, a very uneven
community would be expected to have a very low median 2pilnpi, whereas a perfectly
even community would have a median2pilnpi equal to any2pilnpi.

As expected, in Table 1, evenness in community 1 (0.321. . .) is higher than in com-
munity 2 (0.227. . .). However, this formulation is not fully satisfying, as a perfectly even
community (community 1) should have an evenness index of 1, and a very unequal
sample should have an evenness index nearing zero. In our example, indices of even
and uneven communities, although different, are very close. This issue could be solved
by normalizing the median 2pilnpi by the highest 2pilnpi value. Normalized values of
evenness become 1.000 for the perfectly even community 1 and 0.655 for the uneven
community 2. To further validate this index, here called “normalized-median evenness,”
let two additional communities be created, which are even more extreme than the first
two, but each having three species in order to keep richness constant (Table 2).
Normalized-median evenness clearly differentiates communities 2 and 4, both of which
are very different in terms of richness and evenness. Here is its definition:

NME ¼ median 2pilnpið Þ
max 2pilnpið Þ (2)

where NME is normalized-median evenness, pi is the relative abundance of species i,
and max is the maximum value of2pilnpi.
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NME is similar in principle to, but different from, Pielou’s evenness (J9), a well-known
index (10) that expresses the ratio between a community’s H9 value and the value H9
would take if the community was perfectly even (H9max). Mathematically:

J 9 ¼ H 9

H 9max
(3)

where H9 is Shannon’s entropy and H9max is its maximum possible value (if every spe-
cies was equally likely). In such a case, pi equals 1/S which makes H9max equal to:

H 9max ¼ 2

XS

i¼1

1
S
ln
1
S
¼ lnS (4)

where S is the raw number of species or richness.
Pielou’s evenness is constrained between 0 and 1. It does not consider actual spe-

cies proportions from the measured community, instead expressing H9 as a ratio of a
maximum theoretical value that is never seen in practice.

Unlike Pielou’s index, NME’s numerator and denominator, respectively, represent
the median and maximum value of 2pilnpi from a given biome. Furthermore, NME’s
calculation is independent from the calculation of Shannon’s entropy, i.e., one does
not have to calculate H9 to calculate NME.

Using the fictitious community examples shown above, NME better separates the
uneven and very uneven communities (biomes 2 and 4), whereas the perfectly even
communities (biomes 1 and 3) have evenness values equal to 1 using whichever index
(Table 2).

Graphical representation. By having both components of Shannon’s entropy
untangled, two samples can be compared simultaneously, even if they possess identi-
cal Shannon indices. This can be achieved by plotting richness and normalized-median

TABLE 2 Relative species composition of mock communities 1 to 4 along with their product-
ln-transformations

Species
Proportiona in
community 1

Proportiona in
community 2

Proportiona in
community 3

Proportiona in
community 4

Species 1 0.2 (0.322) 0.5 (0.347) 0.333 (0.366) 0.95 (0.049)
Species 2 0.2 (0.322) 0.1 (0.230) 0.333 (0.366) 0.095 (0.224)
Species 3 0.2 (0.322) 0.1 (0.230) 0.333 (0.366) 0.005 (0.026)
Species 4 0.2 (0.322) 0.1 (0.230)
Species 5 0.2 (0.322) 0.095 (0.224)
Species 6 0.05 (0.150)
Species 7 0.03 (0.105)
Species 8 0.025 (0.092)
Richness 5 8 3 (1) 3
Evenness (NME) 1.000 0.655 1.000 0.218
Evenness (Pielou) 1.000 0.773 1.000 0.272
aRelative proportions (pi) are indicated along with their product-ln-transformations (2pilnpi) in parentheses.

TABLE 1 Relative species proportions in communities 1 and 2

Species
Proportion in
community 1

Proportion in
community 2

Species 1 0.2 0.500
Species 2 0.2 0.100
Species 3 0.2 0.100
Species 4 0.2 0.100
Species 5 0.2 0.095
Species 6 0.050
Species 7 0.030
Species 8 0.025
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evenness on a scatter plot, where each metric would correspond to a different axis
(Fig. 1). Communities 1 and 2 can be fully differentiated, even though they have the
same Shannon index but different richness and evenness terms. Communities 3 (very
even) and 4 (very uneven) are also fully differentiated from each other, even though
their species richness is the same.

Example with a larger mock data set. Let there be a mock data set where the di-
versity of two groups (Alpha and Omega) of five samples (A to J) belonging to two
regions (Urban, Rural) is compared (Table 3). All previously discussed diversity indices,
or their components, have been precomputed. Now let the data be plotted on a
Richness versus Normalized-Median Evenness plot as previously described, with 95%
confidence ellipses for each group (Fig. 2A). A clear separation between samples from
the Alpha and Omega groups can be made, which would not have been possible by
comparing their Shannon indices alone (Fig. 2C). Note how means and confidence
intervals (CIs) overlap. Confidence ellipses may be used to detect statistically significant
differences between groups, but they are not very useful for assessing the effect of sev-
eral grouping variables at the same time. To illustrate this factor, let another grouping
factor (Region) be included in fictional samples A to J mentioned above (Table 3;
Fig. 2B and D).

It is possible to use the evenness and richness values to compute a Euclidean dis-
tance matrix, which can be used as input for permutational multivariate analysis of var-
iance (PERMANOVA) (11). A PERMANOVA was computed (99 permutations total) with
the adonis() function from the vegan package (12) using Richness and Evenness values
as response variables and Group and Region as explanatory variables. It revealed a sig-
nificant effect of Group on alpha diversity (F = 14.3, R2 = 0.70, P = 0.02), but no signifi-
cant Region effect (F = 0.32, R2 = 0.02, P = 0.59) and no significant interaction between
Group and Region (F = 0.04, R2 = 0.0002, P = 0.88). If a conventional two-factor ANOVA
had been performed using Shannon’s entropy as a response variable, no significant
effect on alpha diversity would have been detected, regardless of the grouping factor
(0.2 , P , 0.92). Multivariate dispersion plots (Fig. 2E and F) show that richness-even-
ness coordinates have similar dispersions, indicating constancy of variance and the
respect of PERMANOVA’s assumption of homoscedasticity, even though this multivari-
ate test is robust to nonconstancy of variance in balanced designs (13).

The next section describes an example of real data analysis using Evenness-

FIG 1 Normalized-Median Evenness versus Richness plot for mock communities 1 to 4.
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Richness scatter plots and related statistical analyses. Briefly, the use of those graphs
allowed a more thorough view of alpha diversity than using Shannon’s entropy.
Moreover, we identified a clustering effect caused by the pooling of data obtained
through multiple next-generation sequencing technologies. This effect was shown to
be significant with PERMANOVA.

Analysis of a real data set: enterotypes of the human gut microbiome (2011). (i)
Introduction to the data set. Published in Nature in 2011, the work of Arumugam et
al. compared the fecal microbiota from 22 subjects using complete shotgun DNA
sequencing (14). The authors further compared these microbial communities with the
fecal communities of subjects from other studies. A total of 280 fecal samples/subjects
are represented in this data set, and 553 microbial genera were detected. The authors
claim that the data naturally clump into three community-level clusters, or “entero-
types,” that are not immediately explained by sequencing technology or demographic
features of the subjects. These data are included into the R package phyloseq (15) as
an example data set.

When studying the top 10 most abundant genera across the enterotype data set,
we see that each enterotype is dominated by distinct subsets of genera (Fig. 3A).
Enterotype 1 is dominated by Bacteroides spp., whereas enterotypes 2 and 3 are domi-
nated by Prevotella spp. and Blautia spp., respectively. Despite the very different top
genus abundance profiles, the three enterotypes appear very similar in terms of alpha
diversity when measured with Shannon’s entropy (Fig. 3B).

(ii) Evenness-Richness graph analysis. When alpha diversity across enterotypes is
visualized with Evenness-Richness scatter plots instead, we see that the confidence
ellipses of each enterotype group are entirely overlapping (Fig. 3C). However, there are
two completely distinct clusters visible on this figure, each being composed of samples
from various enterotypes. In the right-side cluster (here named cluster 2), there is a
higher proportion of samples from enterotype 1 (Table 4).

There is a significant discrepancy in the relative proportions of enterotypes in the
two clusters (x 2 = 8.1945, P , 0.02). Given that those clusters are differentiated along
the Richness axis, there appears to be a systematic bias on the assessment of richness
between the two clusters. Interestingly, the enterotype data set includes data obtained
through three different sequencing technologies (i.e., Sanger, 454, and Illumina). An
Evenness versus Richness plot with samples labeled by sequencing technology
revealed that cluster 2 is made of all the Illumina samples of the data set (Fig. 4A).

Richness in Illumina samples is about 1 order of magnitude higher than in Sanger
samples. This may be reflective of the high throughput of Illumina sequencing relative
to Sanger sequencing (16). In contrast, evenness appears lower in Illumina samples
than in Sanger and 454 samples. Those differences in sequencing technologies could
not have been detected while using Shannon’s entropy alone.

The average Shannon index of 454 samples is significantly different from the two
other groups, whose means and CIs completely overlap (Fig. 4B), despite that Illumina
and Sanger samples differ in orders of magnitude in evenness. If the data from cluster

TABLE 3 Species composition and various diversity metrics of a larger fictional data set of 10 biomes belonging to two groups (Alpha and
Omega) and two regions (Urban, Rural)

Biome Group Region p1 p2 p3 p4 p5 Sum(pi) Richness Evenness (NME) Shannon
A Alpha Urban 0.7 0.2 0.05 0.05 1.00 4 0.620 0.871
B Alpha Rural 0.8 0.1 0.05 0.0045 0.005 1.00 5 0.651 0.725
C Alpha Urban 0.8 0.1 0.05 0.05 1.00 4 0.713 0.708
D Alpha Rural 0.6 0.3 0.05 0.05 1.00 4 0.632 0.967
E Alpha Urban 0.8 0.1 0.05 0.04 0.01 1.00 5 0.651 0.733
F Omega Rural 0.4 0.3 0.3 1.00 3 0.985 1.089
G Omega Urban 0.6 0.4 1.00 2 0.918 0.673
H Omega Rural 0.4 0.35 0.25 1.00 3 0.997 1.081
I Omega Urban 0.6 0.25 0.15 1.00 3 0.884 0.938
J Omega Rural 0.5 0.5 1.00 2 1.000 0.693
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1 (Sanger/454 samples) and cluster 2 (Illumina samples) were analyzed separately, the
conclusions made on the enterotypes’ alpha diversity would have been different
(Fig. 5).

The clustering effect caused by sequencing technology and its influence on the distri-
bution of enterotypes were further assessed with a PERMANOVA. A total of 99 permuta-
tions were calculated, with the Evenness-Richness Euclidean distance matrix as a response
object and Cluster as explanatory variable. There is a strong and significant effect of Cluster
(R2 = 0.99, P , 0.01). The Enterotype variable could not be used for PERMANOVA because
of nonconstancy of variance (Fig. 6). Using an Evenness versus Richness plot to visualize
alpha diversity allowed us not only to detect but also to quantify this clustering effect
caused by sequencing technology in the enterotype data set.

Advantages and limitations. (i) Use of richness as a component. The two-dimen-
sional representation of Shannon’s entropy described here uses richness as one of
its components. Richness has been shown to be an unreliable alpha diversity metric

FIG 2 Alpha diversity for fictional communities A to J. (A and B) Normalized-Median Evenness versus Richness plot for grouping
factors Group and Region. Ellipses = 95% confidence intervals. (C and D) Mean Shannon index1 95% CI for grouping factors Group
and Region. (E) Multivariate dispersion plot of the evenness-richness coordinates with respect to Group. (F) Multivariate dispersion
plot of the evenness-richness coordinates with respect to Region.

Opinion/Hypothesis

March/April 2021 Volume 6 Issue 2 e01019-20 msphere.asm.org 6

https://msphere.asm.org


compared across studies, in part because of the plethora of factors influencing its value,
e.g., sampling design, measurement method, sequencing throughput, etc. (17). Here, the
choice of species richness as a component was to simplify the presentation of the
method. An interesting alternative would be the use of Hill numbers (2), also called
“effective number of species.” For example, the first-order Hill number (1D) is mathemati-
cally related to Shannon’s entropy, is less sensitive to sampling and/or throughput
biases, and could provide a less biased alternative to absolute species richness (6).

(ii) Relationship with other diversity plotting methods. We are aware that com-
munities can be differentiated by plotting an ordination from a beta diversity distance
matrix or by comparing abundances. However, beta diversity does not measure entropy
but rather the distance (or turnover) between two community compositions. It is a differ-
ent concept from alpha diversity (1). Furthermore, beta diversity is usually plotted in
ordinations (e.g., principal-component analysis [PCA] or nonmetric multidimensional
scaling [NMDS]) whose axes are not directly interpretable except for how they explain
variance. The axes in evenness-richness scatter plots are not ordination components but
rather alpha diversity metrics (richness and evenness) which make it possible to visually
explain the distance between two data points in terms of richness and/or evenness or
both (i.e., alpha diversity increases diagonally toward the top right corner of plots).

Conclusion. By comparing Shannon’s entropy alone, groups of samples may be
entirely indistinguishable from one another. Moreover, one may overlook methodolog-
ical biases that may affect the interpretation of alpha diversity analysis, e.g., combining

TABLE 4 Number of samples belonging to enterotypes 1, 2, and 3 in both clusters seen on
the previous figure

Cluster
Samples from
enterotype 1

Samples from
enterotype 2

Samples from
enterotype 3 Total

Cluster 1 105 26 55 186
Cluster 2 63 9 13 85

Total 168 35 68 271

FIG 3 Impact of enterotype on alpha diversity within the human gut microbiota. (A) Relative proportions of the top 8
most abundant genera across the enterotype data set. Error bars indicate 95% confidence intervals. (B) Mean Shannon
index of enterotype samples grouped by enterotype. Error bars indicate 95% confidence intervals. (C) Evenness-Richness
plot of enterotype samples grouped by enterotype. Ellipses = 95% confidence intervals.
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data sets obtained through different sequencing technologies as seen in the entero-
type data set. Therefore, plotting the two components that it measures (richness and
evenness) on 2D graphs gives a more thorough understanding of how alpha diversity
differs between groups of samples. The data can be visualized in a 2D scatter plot
where tight grouping indicates similarity between samples. Statistical methods, such
as confidence ellipses or PERMANOVA, can be used to detect significant differences
between groups, even if their Shannon index is the same.

MATERIALS ANDMETHODS
All statistical analyses were performed in RStudio using R v3.4.2. Briefly, mock data sets were pre-

pared using predetermined taxon abundance values in order to best illustrate cases where Shannon

FIG 4 Alpha diversity of enterotype samples grouped by sequencing technology. (A) Evenness-Richness plot.
Ellipses indicate a confidence level of 95%. (B) Mean Shannon index of enterotype samples grouped by
sequencing technology. Error bars indicate 95% confidence intervals.

FIG 5 Evenness-Richness plot of samples in cluster 1 (Sanger/454) and cluster 2 (Illumina).
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indices are identical between two communities despite different richness and evenness values. The
enterotype data set was imported from (and analyzed with) the phyloseq package suite for microbiome
data analysis (15). Top taxon abundance graphs were generated with a customized version of phyloseq’s
plot_bar function which builds mean taxon abundance plots with error bars. Shannon’s entropy and
Evenness-Richness scatter plots were generated with package ggplot2 (https://ggplot2.tidyverse.org/)
from summarized data remodeled from phyloseq-class objects with the summarySE function from pack-
age Rmisc (https://www.rdocumentation.org/packages/Rmisc/). For univariate plots, 95% confidence
intervals were calculated either from the summarySE() function or from the ci() function from package
gmodels (https://cran.r-project.org/web/packages/gmodels/), while 95% confidence ellipses were calcu-
lated within ggplot2 for 2D graphs using the stat_ellipse() function. PERMANOVAs were computed with
the adonis() function from the R vegan package (12). Prior to PERMANOVA, the homoscedasticity of
Euclidean distances between richness-evenness coordinate pairs was verified using vegan’s betadisper()
function for each grouping factor, and then visualized as principal-coordinate analysis (PCoA) plots using
R’s default plot() method.

Data availability. A full R Markdown version of this article’s source code is available on GitHub:
http://www.github.com/jeffgauthier/alpha-diversity-graphs/.
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